Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

anti-Bis (μ-2-ammonioethanethiol-ato- $\left.\kappa^{2} S: S\right)$ bis[dichloropalladium(II)] dihydrate

Yoshitaro Miyashita, Satoshi Arai, Yasunori Yamada, Kiyoshi Fujisawa and Ken-ichi Okamoto*

Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
Correspondence e-mail: okamoto@chem.tsukuba.ac.jp
Received 5 June 2001
Accepted 25 September 2001
Each of two square-planar $\mathrm{Pd}^{\text {II }}$ ions in the title compound, $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{4}(\mu \text {-Haet-S })_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Haet $=2$-ammonioethanethiolate, $\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{NS}$), which was obtained by rearrangement of $\left[\mathrm{Pd}_{2}\left\{\operatorname{Pd}(\text { aet }-N, S)_{2}\right\}_{4}\right]^{4+}$ in acidic solution, is coordinated by two bridging S atoms from two Haet ligands and by two terminal Cl atoms, forming the dinuclear structure. Since the complex is situated on a center of symmetry, the two monodentate Haet arms are located on opposite sides of the central $\mathrm{Pd}_{2} \mathrm{~S}_{2}$ square plane, i.e. the present complex is the anti isomer. The $\mathrm{S}-\mathrm{C}-\mathrm{C}-\mathrm{N}$ torsion angle is $177.3(6)^{\circ}$ and some intermolecular hydrogen bonds are observed.

Comment

It has been recognized that the $\mathrm{Pd}^{\text {II }}$ ion readily forms an S-bridged $\mathrm{Pd}_{2} \mathrm{~S}_{2} \mathrm{Cl}_{4}$ core by reaction with disulfide compounds, such as diphenyl disulfide (Karet \& Kostić, 1998). Using the corresponding reaction with cystamine, the dinuclear complex with 2-ammonioethanethiolate (Haet; Efimenko et al., 2000) has been synthesized. This complex exhibits some intramolecular hydrogen bonds involving the ammonio groups of the bridging ligands. On the other hand, during the course of our synthetic investigation of S-bridged polynuclear complexes

containing square-planar $\left[\operatorname{Pd}(\text { aet }-N, S)_{2}\right]$ units as building blocks (Yamada et al., 2000a,b), we found a geometrically different structure of the Haet complex. We describe here, therefore, the crystal structure of $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{4}(\mu \text {-Haet-S })_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, (I), which occupies a center of symmetry in the unit cell.

The complex molecule in (I) consists of two square-planar Pd atoms, two S-bridging monodentate ligands and four terminal Cl atoms (Fig. 1). The fact that there are no counterions in the crystal implies that the dinuclear complex is neutral, i.e. the terminal N atoms of the S-bridging ligands are protonated during the reaction and exist as $\mathrm{NH}_{3}{ }^{+}$groups. This unusual monodentate coordination mode resulting from the protonation of the aet ligands influences the stereochemistry of the dinuclear complex (see below).

Although the overall S-bridged $\mathrm{Pd}^{\mathrm{II}}$ dinuclear structure, $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{4}(\mu \text {-Haet-S })_{2}\right]$, of the complex in (I) is similar to that of the complex reported by Efimenko et al. (2000), notable differences are observed in the geometry for the bridging Haet ligands. The two monodentate Haet arms of the previously reported complex are located on the same side of the central $\mathrm{Pd}_{2} \mathrm{~S}_{2}$ square plane, i.e. the complex adopts a syn form with a twofold axis through the center of the $\mathrm{Pd}_{2} \mathrm{~S}_{2}$ square plane. On the other hand, in the present complex, the two monodentate Haet arms are located on opposite sides of the central $\mathrm{Pd}_{2} \mathrm{~S}_{2}$ square plane (Fig. 1), i.e. the complex adopts an anti form with an inversion center at the center of the $\mathrm{Pd}_{2} \mathrm{~S}_{2}$ square plane. According to the differences in the geometry, the two $\mathrm{PdS}_{2} \mathrm{Cl}_{2}$ planes are bent over the $\mathrm{S}-\mathrm{S}$ line (dihedral angle $=138^{\circ}$) in the syn isomer and adopt a coplanar conformation in the anti isomer. The two bridging benzenethiolate ligands in $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{4}(\mu-\mathrm{SPh})_{2}\right]^{2-}$ (Karet \& Kostić, 1998) are located on the same side of the central $\mathrm{Pd}_{2} \mathrm{~S}_{2}$ square plane, but the $\mathrm{Pd}_{2} \mathrm{~S}_{2} \mathrm{Cl}_{4}$ core is nevertheless essentially planar. Hence, it can be considered that the dihedral angle between two $\mathrm{PdS}_{2} \mathrm{Cl}_{2}$ planes depends not only on the geometry of the bridging S atoms, but also on weak interactions, such as $\pi-\pi$-stacking or hydrogen-bonding interactions.

The bond distances and angles of the $\mathrm{Pd}_{2} \mathrm{~S}_{2} \mathrm{Cl}_{4}$ core in synand anti- $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{4}(\mu \text {-Haet- } S)_{2}\right]$ are almost the same (Table 1), although the $\mathrm{Pd}-\mathrm{S}-\mathrm{Pd}$ angle $\left[97.54(9)^{\circ}\right]$ in the anti isomer, (I), is somewhat larger than that $\left[91.73(3)^{\circ}\right]$ in the syn isomer (Efimenko et al., 2000). Moreover, the $\mathrm{Pd}-\mathrm{S}$ and $\mathrm{Pd}-\mathrm{Cl}$ distances are comparable with those in other $\mathrm{Pd}^{\mathrm{II}}$ complexes, such as $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{4}(\mu-\mathrm{SPh})_{2}\right]^{2-}$ (Karet \& Kostić, 1998) or $\left[\mathrm{PdCl}_{2}\left\{\mathrm{Co}(\text { aet })_{2}(\mathrm{en})\right\}\right]^{+}$(Konno et al., 1998), which can be regarded as a fixed anti form. The $\mathrm{Pd} \cdots \mathrm{Pd}$ distance [3.423 (1) \AA] in the anti isomer is considerably longer than that [3.271 (1) Å] in the syn isomer; there is no evidence of a $\mathrm{Pd}-\mathrm{Pd}$ bond in these cases. The bond distances involving the bridging Haet ligands in syn- and anti- $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{4}(\mu \text {-Haet- } S)_{2}\right]$ also agree with one another. However, the angles of the Haet arms in these complexes are clearly different, that is, the S -$\mathrm{C}-\mathrm{C}-\mathrm{N}$ torsion angles are 55° for the syn isomer and 177.3 (6) ${ }^{\circ}$ for the anti isomer. Consequently, the S and N atoms take a 'trans form' with respect to the $\mathrm{C}-\mathrm{C}$ bond in the anti isomer, (I), and a 'cis form' in the syn isomer.

In the present anti isomer, no intramolecular hydrogen bonds are observed. This is inconsistent with the fact that the $\mathrm{NH}_{3}{ }^{+}$group of the Haet ligand in the syn isomer is close to both the terminal Cl atom and the bridging S atom [the $\mathrm{N} \cdots \mathrm{Cl}$ and $\mathrm{N} \cdots \mathrm{S}$ contact distances are 3.19 (4) and 3.10 (3) \AA, respectively; Efimenko et al., 2000]. Alternatively, the $\mathrm{NH}_{3}{ }^{+}$
group in the anti isomer is close to the water molecule [the $\mathrm{N} 1 \cdots \mathrm{O} 1$ contact distance is 2.81 (1) $\AA \mathrm{A}]$. Considering that the $\mathrm{O} 1 \cdots \mathrm{O} 1^{\mathrm{ii}}$ contact distance $[2.86$ (1) \AA; symmetry code: (ii)

Figure 1
A view of the complex molecule of (I) with the labeling of the non-H atoms. Displacement ellipsoids are shown at the 50% probability level and H atoms are drawn as small circles of arbitrary radii.
$-x+1,-y+1,-z]$ is also short, each complex molecule is linked by intermolecular hydrogen bonds through the two water molecules to form a one-dimensional row in the crystal. Further, the $\mathrm{NH}_{3}{ }^{+}$group is close to the Cl atom of the complex molecule in the neighboring row [the $\mathrm{N} 1 \cdots \mathrm{Cl} 11^{\text {iii }}$ contact distance is 3.186 (8) \AA; symmetry code: (iii) $x-1, y, z]$. Accordingly, it has become apparent that the structural differences between the syn and anti isomers of $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{4}(\mu-\right.$ Haet-S $)_{2}$] greatly influence the crystal lattice.

Experimental

An orange solution containing $\left[\mathrm{Pd}_{2}\left\{\mathrm{Pd}(\text { aet })_{2}\right\}_{4}\right] \mathrm{Br}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Konno et al., 1994; $0.040 \mathrm{~g}, 0.024 \mathrm{mmol}$) in $1.0 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}(30 \mathrm{ml})$ was stirred at room temperature overnight. After removing the unreacted materials by filtration, the filtrate was poured onto a gel-filtration column of Sephadex G-10. Two yellow bands were eluted with $1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ and the first band was concentrated to dryness. The resulting orange powder was redissolved in $1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ and allowed to stand at room temperature for several days. A small number of orange crystals was collected.

Crystal data

$\left[\mathrm{Pd}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{NS}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=544.93$
Monoclinic, $P 2{ }_{1} / c$
$a=7.449$ (1) A
$b=8.941$ (3) \AA
$c=11.984$ (2) \AA
$\beta=91.68$ (1) ${ }^{\circ}$
$V=797.8(3) \AA^{3}$
$Z=2$
$D_{x}=2.268 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=11.2-14.1^{\circ}$
$\mu=3.17 \mathrm{~mm}^{-1}$
$T=296.2 \mathrm{~K}$
Prismatic, orange
$0.15 \times 0.10 \times 0.08 \mathrm{~mm}$

Data collection

Rigaku AFC-7S diffractometer
$\omega-2 \theta$ scans $\omega-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.729, T_{\text {max }}=0.776$
1970 measured reflections
1833 independent reflections
982 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$

Refinement

Refinement on F^{2}
$w=1 /\left\{\sigma^{2}\left(F_{o}{ }^{2}\right)+\left[0.03\left(F_{o}{ }^{2}\right.\right.\right.$
$R(F)=0.044$
$\left.\left.\left.+2 F_{c}^{2}\right) / 3\right]^{2}\right\}$
$w R\left(F^{2}\right)=0.108$
$(\Delta / \sigma)_{\max }<0.001$
$S=0.97$
1833 reflections
74 parameters
H -atom parameters not refined
$\Delta \rho_{\text {max }}=1.11 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.05 \mathrm{e}^{-3}$
Extinction correction: Zachariasen (1967), type 2, Gaussian isotropic Extinction coefficient: 0.0034 (9)

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Pd} 1-\mathrm{Cl} 1$	$2.357(2)$	$\mathrm{Pd} 1-\mathrm{S} 1$	$2.285(3)$
$\mathrm{Pd} 1-\mathrm{Cl} 2$	$2.346(3)$	$\mathrm{Pd} 1-\mathrm{S} 1^{\mathrm{i}}$	$2.267(2)$
$\mathrm{Cl} 1-\mathrm{Pd} 1-\mathrm{Cl} 2$	$93.55(9)$	$\mathrm{S} 1-\mathrm{Pd} 1-\mathrm{S} 1^{\mathrm{i}}$	$82.46(9)$
$\mathrm{Cl} 1-\mathrm{Pd} 1-\mathrm{S} 1$	$91.62(9)$	$\mathrm{Pd} 1-\mathrm{S} 1-\mathrm{Pd} 1^{\mathrm{i}}$	$97.54(9)$
$\mathrm{Cl} 1-\mathrm{Pd} 1-\mathrm{S} 1^{\mathrm{i}}$	$170.40(9)$	$\mathrm{Pd} 1-\mathrm{S} 1-\mathrm{C} 1$	$106.8(3)$
$\mathrm{Cl} 2-\mathrm{Pd} 1-\mathrm{S} 1$	$173.35(9)$	$\mathrm{Pd} 1-\mathrm{S} 1^{\mathrm{i}}-\mathrm{C} 1^{\mathrm{i}}$	$107.3(3)$
$\mathrm{Cl} 2-\mathrm{Pd} 1-\mathrm{S} 1^{\mathrm{i}}$	$92.94(9)$		
Symmetry code: (i) $1-x, 1-y, 1-z$.			

H atoms bonded to C or N atoms were fixed geometrically and allowed to ride on their attached atoms $[\mathrm{C}-\mathrm{H}=\mathrm{N}-\mathrm{H}=0.95 \AA$; $\left.U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})\right]$. The H atoms of the water molecules were not included in the calculations.

Data collection: WinAFC (Rigaku Corporation, 1999); cell refinement: WinAFC; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: TEXSAN; software used to prepare material for publication: TEXSAN.

This work was supported by a Grant-in-Aid for Scientific Research (Nos. 12023205 and 11640555) from the Ministry of Education, Science, Sports and Culture, Japan.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OA1118). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, M., Giacovazzo, C., Guagliardi, A. \& Polidori, G. (1994). J. Appl. Cryst. 27, 435.
Efimenko, I. A., Gasanov, Kh. I., Ivanova, N. A., Lokshin, B. V., Zakharov, A. A. \& Kuz'mina, L. G. (2000). Russ. J. Coord. Chem. 26, 112-119.

Karet, G. B. \& Kostić, N. M. (1998). Inorg. Chem. 37, 1021-1027.
Konno, T., Machida, T. \& Okamoto, K. (1998). Bull. Chem. Soc. Jpn, 71, 175181.

Konno, T., Yonenobu, K., Hidaka, J. \& Okamoto, K. (1994). Inorg. Chem. 33, 861-864.
Molecular Structure Corporation (1999). TEXSAN. Version 1.10b. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Rigaku (1999). WinAFC. Version 1.0.2. Rigaku Corporation, Tokyo, Japan.
Yamada, Y., Fujisawa, K. \& Okamoto, K. (2000a). Bull. Chem. Soc. Jpn, 73, 2067-2073.
Yamada, Y., Fujisawa, K. \& Okamoto, K. (2000b). Bull. Chem. Soc. Jpn, 73, 2297-2303.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

